Variational Bayes for Continuous-Time Nonlinear State-Space Models

نویسندگان

  • Antti Honkela
  • Matti Tornio
  • Tapani Raiko
چکیده

We present an extension of the variational Bayesian nonlinear state-space model introduced by Valpola and Karhunen in 2002 [1] for continuous-time models. The model is based on using multilayer perceptron (MLP) networks to model the nonlinearities. Moving to continuous-time requires solving a stochastic differential equation (SDE) to evaluate the predictive distribution of the states, but otherwise all computation happens as in the discrete-time case. The close connection between the methods allows utilising our new improved state inference method for both discrete-time and continuous-time modelling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Gaussian Process State-Space Models

State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...

متن کامل

Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data

We introduce Deep Variational Bayes Filters (DVBF), a new method for unsupervised learning and identification of latent Markovian state space models. Leveraging recent advances in Stochastic Gradient Variational Bayes, DVBF can overcome intractable inference distributions via variational inference. Thus, it can handle highly nonlinear input data with temporal and spatial dependencies such as im...

متن کامل

Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes

Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential family using the variational Bayesian expectation maximisation (VB EM) algorithm or one of its variants. In this paper we present an efficient algorithm for applying VB to more general models. The method is based on specifying the functional form of the approximation, such as multivariate Gaussia...

متن کامل

Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based o...

متن کامل

Variational Inference and Learning for Continuous-Time Nonlinear State-Space Models

Inference in continuous-time stochastic dynamical models is a challenging problem. To complement existing sampling-based methods [2], variational methods have recently been developed for this problem [1]. Our approach, which was first introduced in [3], solves the variational continuous-time inference problem by discretisation that essentially reduces it to a discrete-time problem previously co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006